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Processing in Reproducing Kernel Hilbert Spaces is gaining in

popularity within the signal Processing Community:

Basic Steps:

1 Map the finite dimensionality input data from the input

space F into a higher dimensionality RKHS H.

2 Perform a linear processing (e.g., adaptive filtering) on the

mapped data in H.

This procedure is equivalent with a non linear processing in F .
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Consider a linear class H of real valued functions f defined on a

set X (in particular H is a Hilbert space), for which there exists

a function κ : X × X → R with the following two properties:

1 For every x ∈ X , κ(·, x) belongs to H.

2 κ has the so called reproducing property, i.e.,

f (x) = 〈f , κ(·, x)〉H, for all f ∈ H, x ∈ X . (1)
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In particular, If

X ∋ x → Φ(x) := κ(·, x) ∈ H
X ∋ y → Φ(y) := κ(·, y) ∈ H,

then the inner product in H is given as a function computed on

X :

κ(x , y) = 〈κ(·, y), κ(·, x)〉H kernel trick
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Developing Algorithms in RKHS

The black box approach.

Develop the Algorithm in X .

Express it, if possible, in inner products.

Replace inner products with kernel evaluations according to
the kernel trick.

Work directly in the RKHS, assuming that the data have

been mapped and live in the RKHS H, i.e.,

X ∋ x → Φ(x) := κ(·,x) ∈ H.
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Consider the sequence of examples

(x(1),d(1)), (x(2),d(2)), . . . , (x(N),d(N)):

In a typical LMS filter the goal is to learn a linear input

output mapping f : X → R : f (x) = wT x , so that to

minimize the square error E [|d(n)− wT x(n) |2].
Using the derivative of the cost, the gradient descent

update rule becomes: w(n) = w(n − 1) + µe(n)x(n).

The desired output becomes

d̂(n) = w(n − 1)T x(n) = µ
∑n−1

k=1 e(k) x(k)T x(n) .
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(Φ(x(1)),d(1)), (Φ(x(2)),d(2)), . . . , (Φ(x(N)),d(N)).

We apply the LMS procedure to the sequence of examples

minimizing the cost function E [|d(n)− 〈Φ(x(n)),w 〉H |2],
where now w ∈ H.

Using the derivative in the RKHS the update rule for the

KLMS becomes: w(n) = w(n − 1) + µe(n)Φ(x(n)).

The filter output of the KLMS is:

d̂(n) = 〈x(n),w(n − 1)〉H = µ
∑n−1

k=1 e(k) κ(x(k),x(n)) .
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Remark

Since he RKHS H can be an infinite dimensional space, the

derivative has to be considered in the Fréchet generalized

notion:

An operator T : H → F is said to be Fréchet differentiable at f0,

if there exists u ∈ H such that the limit

lim
‖h‖H→0

T (f0 + h)− T (f0)− 〈u,h〉H
‖h‖H

= 0.
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Remark

This definition might seems a little "strange”, but it originates

from the classical definition of differentiability.

For example, consider the function f : R → R.

We say that f is differentiable at x iff the following limit exists:

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

P. Bouboulis, S. Theodoridis Complex Kernel LMS 14 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

Preliminaries

Kernel LMS

Remark

After some elementary algebra one obtains:

P. Bouboulis, S. Theodoridis Complex Kernel LMS 15 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

Preliminaries

Kernel LMS

Remark

After some elementary algebra one obtains:

lim
h→0

f (x + h)− f (x)

h
= f ′(x)

lim
h→0

(

f (x + h)− f (x)

h
− f ′(x)

)

= 0

lim
h→0

(

f (x + h)− f (x)− f ′(x) · h

h

)

= 0.

P. Bouboulis, S. Theodoridis Complex Kernel LMS 15 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

Preliminaries

Kernel LMS

Remark

After some elementary algebra one obtains:

lim
h→0

f (x + h)− f (x)

h
= f ′(x)

lim
h→0

(

f (x + h)− f (x)

h
− f ′(x)

)

= 0

lim
h→0

(

f (x + h)− f (x)− f ′(x) · h

h

)

= 0.

The last relation is the kick off point of the Fréchet

differentiability in general Hilbert spaces:

P. Bouboulis, S. Theodoridis Complex Kernel LMS 15 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

Preliminaries

Kernel LMS

Remark

After some elementary algebra one obtains:

lim
h→0

f (x + h)− f (x)

h
= f ′(x)

lim
h→0

(

f (x + h)− f (x)

h
− f ′(x)

)

= 0

lim
h→0

(

f (x + h)− f (x)− f ′(x) · h

h

)

= 0.

The last relation is the kick off point of the Fréchet

differentiability in general Hilbert spaces:

lim
‖h‖H→0

T (f0 + h)− T (f0)− 〈u,h〉H
‖h‖H

= 0.

P. Bouboulis, S. Theodoridis Complex Kernel LMS 15 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

The Complex Case: Wirtinger’s Calculus

Wirtinger’s Calculus in complex RKHS

Outline

1 Signal Processing with Kernels

Preliminaries

Kernel LMS

2 Wirtinger’s Calculus

The Complex Case: Wirtinger’s Calculus

Wirtinger’s Calculus in complex RKHS

3 Complex Kernel LMS

Formulation

Sparsification

Experiments

P. Bouboulis, S. Theodoridis Complex Kernel LMS 16 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

The Complex Case: Wirtinger’s Calculus

Wirtinger’s Calculus in complex RKHS

Complex and real derivatives

Consider a complex function

f : C → C : f (z) = f (x + iy) = fr (z) + ifi(z).

P. Bouboulis, S. Theodoridis Complex Kernel LMS 17 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

The Complex Case: Wirtinger’s Calculus

Wirtinger’s Calculus in complex RKHS

Complex and real derivatives

Consider a complex function

f : C → C : f (z) = f (x + iy) = fr (z) + ifi(z).

We will say that f is differentiable in the complex sense at c (or

that it has complex derivative at c), iff the limit

lim
z→c

f (z)− f (c)

z − c

exists.
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Wirtinger’s Calculus in complex RKHS

Remarks

Complex differentiability is a very strict notion.

In complex signal processing we often encounter functions

(e.g., the cost functions, which are defined in R) that ARE

NOT complex differentiable.

Example: f (z) = |z|2 = zz∗.

In these cases one has to express the cost function in

terms of its real part fr and its imaginary part fi , and use

real derivation with respect to fr , fi .
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Wirtinger’s Calculus in complex RKHS

Wirtinger’s Approach

This approach leads usually to cumbersome and tedious

calculations.

Wirtinger’s Calculus provides an alternative equivalent

formulation.

It is based on simple rules and principles.

These rules bear a great resemblance to the rules of the

standard complex derivative.
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Wirtinger’s Calculus considers two forms of derivatives:

The R-derivative:
∂f
∂z = 1

2

(

∂fr
∂x + ∂fi

∂y

)

+ i
2

(

∂fi
∂x − ∂fr

∂y

)

,
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Wirtinger’s Calculus in complex RKHS

Wirtinger’s Approach

Wirtinger’s Calculus considers two forms of derivatives:

The R-derivative:
∂f
∂z = 1

2

(

∂fr
∂x + ∂fi

∂y

)

+ i
2

(

∂fi
∂x − ∂fr

∂y

)

,

The conjugate R-derivative:
∂f
∂z∗ = 1

2

(

∂fr
∂x

− ∂fi
∂y

)

+ i
2

(

∂fi
∂x

+ ∂fr
∂y

)

.
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Wirtinger’s Calculus in complex RKHS

Simple Rules
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Wirtinger’s Calculus in complex RKHS

Simple Rules

Wirtinger’s rules are based on the fact that any complex

functions, which it is differentiable in the real sense, can be

written in the form f (z, z∗).

It can be proved that ∂f
∂z

can be easily evaluated as the

standard complex derivative taken with respect to z (thus

treating z∗ as a constant).

Similarly ∂f
∂z∗ can be easily evaluated as the standard

complex derivative taken with respect to z∗ (thus treating z

as a constant).
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Examples

Let f (z) = z + z∗. Then ∂f
∂z = 1, ∂f

∂z∗ = 1.
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Wirtinger’s Calculus in complex RKHS

Examples

Let f (z) = z + z∗. Then ∂f
∂z = 1, ∂f

∂z∗ = 1.

Let f (z) = z2. Then ∂f
∂z = 2z, ∂f

∂z∗ = 0.
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Wirtinger’s Calculus in complex RKHS

Examples

Let f (z) = z + z∗. Then ∂f
∂z = 1, ∂f

∂z∗ = 1.

Let f (z) = z2. Then ∂f
∂z = 2z, ∂f

∂z∗ = 0.

Let f (z) = |z|2 = zz∗. Then ∂f
∂z

= z∗, ∂f
∂z∗ = z.
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dimensional complex space (i.e., Cν).
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Wirtinger’s Calculus in complex RKHS

Extension of Wirtinger’s Calculus

Wirtinger’s Calculus can be easily extended to any finite

dimensional complex space (i.e., Cν).

The main rules and principles are similar.

In order to extend it to a complex RKHS (where the

dimensionality can be infinite), we need to employ the

notion of Fréchet differentiability.
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Consider a complex RKHS H and a complex operator

T = Tr + iTi , where Tr ,Ti are defined on H.
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Wirtinger’s derivatives in RKHS

Consider a complex RKHS H and a complex operator

T = Tr + iTi , where Tr ,Ti are defined on H.

Let ∇rTr , ∇rTi , ∇iTr , ∇iTi be the respective Fréchet

derivatives (gradients).
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Wirtinger’s derivatives in RKHS

Consider a complex RKHS H and a complex operator

T = Tr + iTi , where Tr ,Ti are defined on H.

Let ∇rTr , ∇rTi , ∇iTr , ∇iTi be the respective Fréchet

derivatives (gradients).

We can define the respective R-derivative and conjugate

R-derivative of T as follows:
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Wirtinger’s derivatives in RKHS

Consider a complex RKHS H and a complex operator

T = Tr + iTi , where Tr ,Ti are defined on H.

Let ∇rTr , ∇rTi , ∇iTr , ∇iTi be the respective Fréchet

derivatives (gradients).

We can define the respective R-derivative and conjugate

R-derivative of T as follows:

R-derivative:

∇f T =
1

2
(∇rTr +∇iTi) +

i

2
(∇r Ti −∇iTr ) .
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Wirtinger’s derivatives in RKHS

Consider a complex RKHS H and a complex operator

T = Tr + iTi , where Tr ,Ti are defined on H.

Let ∇rTr , ∇rTi , ∇iTr , ∇iTi be the respective Fréchet

derivatives (gradients).

We can define the respective R-derivative and conjugate

R-derivative of T as follows:

R-derivative:

∇f T =
1

2
(∇rTr +∇iTi) +

i

2
(∇r Ti −∇iTr ) .

conjugate R-derivative:

∇f∗T =
1

2
(∇rTr −∇iTi) +

i

2
(∇r Ti +∇iTr ) .
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Rules and Properties

Several rules and properties of the ordinary Wirtinger’s

Calculus can be easily extended:
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Several rules and properties of the ordinary Wirtinger’s

Calculus can be easily extended:

If T is f -holomorphic (i.e., it has a Taylor series expansion

with respect to f ), then ∇f∗T = 0.
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Wirtinger’s Calculus in complex RKHS

Rules and Properties

Several rules and properties of the ordinary Wirtinger’s

Calculus can be easily extended:

If T is f -holomorphic (i.e., it has a Taylor series expansion

with respect to f ), then ∇f∗T = 0.

If T is f ∗-holomorphic (i.e., it has a Taylor series expansion

with respect to f ∗), then ∇f T = 0.
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Wirtinger’s Calculus in complex RKHS

Rules and Properties

Several rules and properties of the ordinary Wirtinger’s

Calculus can be easily extended:

If T is f -holomorphic (i.e., it has a Taylor series expansion

with respect to f ), then ∇f∗T = 0.

If T is f ∗-holomorphic (i.e., it has a Taylor series expansion

with respect to f ∗), then ∇f T = 0.

(∇f T )∗ = ∇f∗T ∗.
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Wirtinger’s Calculus in complex RKHS

Rules and Properties

Several rules and properties of the ordinary Wirtinger’s

Calculus can be easily extended:

If T is f -holomorphic (i.e., it has a Taylor series expansion

with respect to f ), then ∇f∗T = 0.

If T is f ∗-holomorphic (i.e., it has a Taylor series expansion

with respect to f ∗), then ∇f T = 0.

(∇f T )∗ = ∇f∗T ∗.

(∇f∗T )∗ = ∇f T
∗.
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Wirtinger’s Calculus in complex RKHS

Rules and Properties

Any gradient descent based algorithm minimizing a real valued

operator T (f ) is based on the update scheme:

f n = f n−1 − µ · ∇f∗T (f n−1).
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Wirtinger’s Calculus in complex RKHS

Rules and Properties

Any gradient descent based algorithm minimizing a real valued

operator T (f ) is based on the update scheme:

f n = f n−1 − µ · ∇f∗T (f n−1).

Remark: We have used f in place of w (used before) to stress

the fact that the RKHS H can be of infinite dimension.
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and z(n) ∈ C
ν

P. Bouboulis, S. Theodoridis Complex Kernel LMS 29 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

Formulation

Sparsification

Experiments

Mapping to the complex RKHS

Consider the sequence of examples

(z(1),d(1)), (z(2),d(2)), . . . (z(N),d(N)), where d(n) ∈ C

and z(n) ∈ C
ν

Let z(n) = x(n) + iy(n), x(n),y(n) ∈ R
ν .
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Mapping to the complex RKHS

Consider the sequence of examples

(z(1),d(1)), (z(2),d(2)), . . . (z(N),d(N)), where d(n) ∈ C

and z(n) ∈ C
ν

Let z(n) = x(n) + iy(n), x(n),y(n) ∈ R
ν .

We map the points z(n) to the complex RKHS H an

appropriate complex mapping Φ.
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Choice of the complex mapping Φ

Φ can be any complex kernel, e.g., κ(x , y) = 1
1−y∗x (Szego

kernel).
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Choice of the complex mapping Φ

Φ can be any complex kernel, e.g., κ(x , y) = 1
1−y∗x (Szego

kernel).

Φ can be the result of complexifing real kernels:

Φ(z(n)) = Φ(z(n)) + iΦ(z(n))

= κ
(

(x(n),y(n))T , ·
)

+ i · κ
(

(x(n),y(n))T , ·
)

,
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Choice of the complex mapping Φ

Φ can be any complex kernel, e.g., κ(x , y) = 1
1−y∗x (Szego

kernel).

Φ can be the result of complexifing real kernels:

Φ(z(n)) = Φ(z(n)) + iΦ(z(n))

= κ
(

(x(n),y(n))T , ·
)

+ i · κ
(

(x(n),y(n))T , ·
)

,

The latter choice has been used in this work, using the real

gaussian kernel. This is because the behavior of such

kernels is well understood in SP applications.
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Choice of the complex mapping Φ

Φ can be any complex kernel, e.g., κ(x , y) = 1
1−y∗x (Szego

kernel).

Φ can be the result of complexifing real kernels:

Φ(z(n)) = Φ(z(n)) + iΦ(z(n))

= κ
(

(x(n),y(n))T , ·
)

+ i · κ
(

(x(n),y(n))T , ·
)

,

The latter choice has been used in this work, using the real

gaussian kernel. This is because the behavior of such

kernels is well understood in SP applications.

Note that when complexified real kernels are employed,

the complex kernel LMS CANNOT be derived by applying

the standard kernel trick on the complex LMS (details in

the paper).
P. Bouboulis, S. Theodoridis Complex Kernel LMS 30 / 42



Signal Processing with Kernels

Wirtinger’s Calculus

Complex Kernel LMS

Conclusions

Formulation

Sparsification

Experiments

Complex Kernel LMS

We apply the complex LMS to the transformed data:

(Φ(z(1)),d(1)), (Φ(z(2)),d(2)), . . . (Φ(z(N)),d(N)).
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Complex Kernel LMS

We apply the complex LMS to the transformed data:

(Φ(z(1)),d(1)), (Φ(z(2)),d(2)), . . . (Φ(z(N)),d(N)).

The objective of CKLMS is to minimize

E [|e(n)|2] = E [|d(n)− 〈Φ(z(n), f 〉2
H],

at each instance n.
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Complex Kernel LMS

Using the rules of Wirtinger’s calculus in H we obtain the

following update rule:
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Complex Kernel LMS

Using the rules of Wirtinger’s calculus in H we obtain the

following update rule:

f (n) = f (n − 1) + µe(n)∗ ·Φ(z(n)),

where f (n) denotes the estimate at iteration n.
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Assuming that f (0) = 0, the repeated application of the

weight-update equation gives:
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Complex Kernel LMS

Assuming that f (0) = 0, the repeated application of the

weight-update equation gives:

f (n) =f (n − 1) + µe(n)∗Φ(z(n))

=f (n − 2) + µe(n − 1)∗Φ(z(n − 1))

+ µe(n)∗Φ(z(n))

=

n
∑

k=1

e(k)∗Φ(z(k)).
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Complex Kernel LMS

The filter output at iteration n becomes:
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Complex Kernel LMS

The filter output at iteration n becomes:

d̂(n) =〈Φ(z(n)),w (n − 1)〉H

=µ
n−1
∑

k=1

e(k)〈Φ(z(n)),Φ(z(k))〉H

=2µ

n−1
∑

k=1

e(k)κ(z(n), z(k))

=2µ

n−1
∑

k=1

ℜ[e(n)]κ(z(n), z(k)) + 2µ · i

n−1
∑

k=1

ℑ[e(n)]κ(z(n), z(k)),
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CKLMS and other kernel based adaptive filtering

algorithms require a growing network of training centers

z(0), z(1), . . . , z(n), . . . .
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Sparsification

CKLMS and other kernel based adaptive filtering

algorithms require a growing network of training centers

z(0), z(1), . . . , z(n), . . . .

Results: Increasing memory and computational

requirements.

A sparse solution is needed.

Any sparsification algorithm can be employed. Details are

given in the paper.
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Figure: The equalization problem.
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t(n) = (−0.9 + 0.8i) · s(n) + (0.6 − 0.7i) · s(n − 1)
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t(n) = (−0.9 + 0.8i) · s(n) + (0.6 − 0.7i) · s(n − 1)

q(n) = t(n) + (0.1 + 0.15i) · t2(n) + (0.06 + 0.05i) · t3(n)
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t(n) = (−0.9 + 0.8i) · s(n) + (0.6 − 0.7i) · s(n − 1)

q(n) = t(n) + (0.1 + 0.15i) · t2(n) + (0.06 + 0.05i) · t3(n)

s(n) = 0.70(
√

1 − ρ2X (n) + iρY (n)), where X (n) and Y (n)
are gaussian random variables.
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t(n) = (−0.9 + 0.8i) · s(n) + (0.6 − 0.7i) · s(n − 1)

q(n) = t(n) + (0.1 + 0.15i) · t2(n) + (0.06 + 0.05i) · t3(n)

s(n) = 0.70(
√

1 − ρ2X (n) + iρY (n)), where X (n) and Y (n)
are gaussian random variables.

1 This input is circular for ρ =
√

2/2
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Experiments

t(n) = (−0.9 + 0.8i) · s(n) + (0.6 − 0.7i) · s(n − 1)

q(n) = t(n) + (0.1 + 0.15i) · t2(n) + (0.06 + 0.05i) · t3(n)

s(n) = 0.70(
√

1 − ρ2X (n) + iρY (n)), where X (n) and Y (n)
are gaussian random variables.

1 This input is circular for ρ =
√

2/2
2 highly non-circular if ρ approaches 0 or 1.
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Circular Data

Learning curves for KNCLMS (µ = 1/2), NCLMS (µ = 1/16) and

WL-NCLMS (µ = 1/16) (filter length L = 5, delay D = 2) in the
nonlinear channel equalization, for the circular input case.
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Learning curves for KNCLMS (µ = 1/2), NCLMS (µ = 1/16) and

WL-NCLMS (µ = 1/16) (filter length L = 5, delay D = 2) in the
nonlinear channel equalization, for the non-circular input case

(ρ = 0.1).
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1 The development of a wide framework that allows

real-valued kernel algorithms to be extended to treat

complex data.

2 The extension of Wirtinger’s Calculus in complex RKHS as

a means for the elegant and efficient computations of

gradients that are involved in many adaptive filtering

algorithms.
3 The development of the Complex Kernel LMS algorithm as

a particular example.

Experiments verify that CKLMS gives significantly better

results compared to CLMS and WL-CLMS for nonlinear
channels.
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